top of page

Pinnacle Pilates Group

Public·3 members

Decoding Design High Quality


Maggie is past president of the Communication Artists of New Mexico, teaches logo design and symbolism as visual literacy for designers at the University of New Mexico/Albuquerque, speaks for conferences and universities, and gives workshops on creating more effective, engaging and aesthetic visual communications based in universal principles.




Decoding Design



There are two basic problems in the statistical analysis of neural data. The "encoding" problem concerns how information is encoded in neural spike trains: can we predict the spike trains of a neuron (or population of neurons), given an arbitrary stimulus or observed motor response? Conversely, the "decoding" problem concerns how much information is in a spike train, in particular, how well can we estimate the stimulus that gave rise to the spike train? This chapter describes statistical model-based techniques that in some cases provide a unified solution to these two coding problems. These models can capture stimulus dependencies as well as spike history and interneuronal interaction effects in population spike trains, and are intimately related to biophysically based models of integrate-and-fire type. We describe flexible, powerful likelihood-based methods for fitting these encoding models and then for using the models to perform optimal decoding. Each of these (apparently quite difficult) tasks turn out to be highly computationally tractable, due to a key concavity property of the model likelihood. Finally, we return to the encoding problem to describe how to use these models to adaptively optimize the stimuli presented to the cell on a trial-by-trial basis, in order that we may infer the optimal model parameters as efficiently as possible.


Decoders optimized offline to reconstruct intended movements from neural recordings sometimes fail to achieve optimal performance online when they are used in closed-loop as part of an intracortical brain-computer interface (iBCI). This is because typical decoder calibration routines do not model the emergent interactions between the decoder, the user, and the task parameters (e.g. target size). Here, we investigated the feasibility of simulating online performance to better guide decoder parameter selection and design. Three participants in the BrainGate2 pilot clinical trial controlled a computer cursor using a linear velocity decoder under different gain (speed scaling) and temporal smoothi